Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Lecture Notes on Data Engineering and Communications Technologies ; 145:755-768, 2022.
Article in English | Scopus | ID: covidwho-1971544

ABSTRACT

The COVID-19 pandemic will likely to have long-lasting impacts on higher education (HE) because of the global disruption it continues to cause. Transnational education (TNE) has been particularly vulnerable and been forced to respond to the disaster through new policies and management strategies. Taking pandemic as a case of crisis management, this paper first applies an integrative review method to synthesize the impacts of the pandemic on TNE institutions in China, and then uses the policy analysis method to explore their real-time governance policies from January 2020 to January 2021. A Pandemic Crisis Management Matrix for TNE is developed and used for the analysis of policies for phases before, during, and after the event. The findings suggest that TNE institutions in China took proactive measures to maintain normal operation during and after the crisis, but paid less attention to pandemic preparedness. In addition, some policies were changing according to the evolving epidemiology, whereas the crisis management objective had remained durable. Theoretically, this paper contributes to the crisis management theory in HE and TNE contexts. Practically, constructive recommendations are provided for government agencies, universities, and TNE institutions in terms of building long-term and transformative resilience and preparing for future crises. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2.
Transfusion ; 62(3): 570-583, 2022 03.
Article in English | MEDLINE | ID: covidwho-1673310

ABSTRACT

BACKGROUND: COVID-19 convalescent plasma (CCP), from donors recovered from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, is one of the limited therapeutic options currently available for the treatment of critically ill patients with COVID-19. There is growing evidence that CCP may reduce viral loads and disease severity; and reduce mortality. However, concerns about the risk of transfusion-transmitted infections (TTI) and other complications associated with transfusion of plasma, remain. Amotosalen/UVA pathogen reduction treatment (A/UVA-PRT) of plasma offers a mitigation of TTI risk, and when combined with pooling has the potential to increase the diversity of the polyclonal SARS-CoV-2 neutralizing antibodies. STUDY DESIGN AND METHODS: This study assessed the impact of A/UVA-PRT on SARS-CoV-2 antibodies in 42 CCP using multiple complimentary assays including antigen binding, neutralizing, and epitope microarrays. Other mediators of CCP efficacy were also assessed. RESULTS: A/UVA-PRT did not negatively impact antibodies to SARS-CoV-2 and other viral epitopes, had no impact on neutralizing activity or other potential mediators of CCP efficacy. Finally, immune cross-reactivity with other coronavirus antigens was observed raising the potential for neutralizing activity against other emergent coronaviruses. CONCLUSION: The findings of this study support the selection of effective CCP combined with the use of A/UVA-PRT in the production of CCP for patients with COVID-19.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Furocoumarins , Humans , Immunization, Passive , SARS-CoV-2 , COVID-19 Serotherapy
4.
Natural Product Communications ; 16(9), 2021.
Article in English | EMBASE | ID: covidwho-1435149

ABSTRACT

Severe acute respiratory syndrome (SARS) once caused great harm in China, but now it is the coronavirus disease 2019 (COVID-19) pandemic that has become a huge threat to global health, which raises urgent demand for developing effective treatment strategies to avoid the recurrence of tragedies. Yinqiao powder, combined with modified Sangju decoction (YPCMSD), has been clinically proven to have a good therapeutic effect on COVID-19 in China. This study aimed to analyze the common mechanism of YPCMSD in the treatment of SARS and COVID-19 through network pharmacology and molecular docking and further explore the potential application value of YPCMSD in the treatment of coronavirus infections. Firstly, the active components were collected from the literature and Traditional Chinese Medicine Systems Pharmacology database platform. The COVID-19 and SARS associated targets of the active components were forecasted by the SwissTargetPrediction database and GeneCards. A protein–protein-interaction network was drawn and the core targets were obtained by selecting the targets larger than the average degree. By importing the core targets into database for annotation, visualization, and integrated discovery, enrichment analysis of gene ontology, and construction of a Kyoto Encyclopedia of genes and genomes pathway was conducted. Cytoscape 3.6.1 software was used to construct a “components–targets–pathways” network. Active components were selected to dock with acute respiratory syndrome coronavirus type 2 (SARS-COV-2) 3CL and angiotensin-converting enzyme 2 (ACE2) through Discovery Studio 2016 software. A network of “components–targets–pathways” was successfully constructed, with key targets involving mitogen-activated protein kinase 1, caspase-3 (CASP3), tumor necrosis factor (TNF), and interleukin 6. Major metabolic pathways affected were those in cancer, the hypoxia-inducible factor 1 signaling pathway, the TNF signaling pathway, the Toll-like receptor signaling pathway, and the PI3K-Akt signaling pathway. The core components, such as arctiin, scopolin, linarin, and isovitexin, showed a strong binding ability with SARS-COV-2 3CL and ACE2. We predicted that the mechanism of action of this prescription in the treatment of COVID-19 and SARS might be associated with multicomponents that bind to SARS-COV-2 3CL and ACE2, thereby regulating targets that coexpressed with them and pathways related to inflammation and the immune system.

5.
J Appl Lab Med ; 6(5): 1305-1315, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1209979

ABSTRACT

BACKGROUND: COVID-19, the disease caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) can present with symptoms ranging from none to severe. Thrombotic events occur in a significant number of patients with COVID-19, especially in critically ill patients. This apparent novel form of coagulopathy is termed COVID-19-associated coagulopathy (CAC), and endothelial derived von Willebrand factor (vWF) may play an important role in its pathogenesis. CONTENT: vWF is a multimeric glycoprotein molecule that is involved in inflammation, primary and secondary hemostasis. Studies have shown that patients with COVID-19 have significantly elevated levels of vWF antigen and activity, likely contributing to an increased risk of thrombosis seen in CAC. The high levels of both vWF antigen and activity have been clinically correlated with worse outcomes. Furthermore, the severity of a COVID-19 infection appears to reduce molecules that regulate vWF level and activity such as ADAMTS-13 and high-density lipoproteins (HDL). Finally, studies have suggested that patients with group O blood (a blood group with lower baseline levels of vWF) have a lower risk of infection and disease severity compared to other ABO blood groups; however, more studies are needed to elucidate the role of vWF. SUMMARY: CAC is a significant contributor to morbidity and mortality. Endothelial dysfunction with the release of prothrombotic factors, such as vWF, needs further examination as a possible important component in the pathogenesis of CAC.


Subject(s)
COVID-19 , Thrombosis , von Willebrand Factor , Humans , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL